

CES I COMPANY BACKGROUND & OVERVIEW

- Founded in 1993 by former Aerojet aerospace engineers
- Corporate engineering and headquarters in Sacramento area
- Kimberlina test facility, a former 5 MW biomass power plant (Bakersfield, CA)
- Initial \$75,000 funding provided by the CEC leveraged more than \$140 million deployed to date
- Focused on enabling technologies for advanced clean energy solutions
 - Oxy-fuel (O-F) pressurized direct and indirect steam gas generators and reheat combustors – modified rocket engines
 - O-F turbines (OFTs) with development partners

CARBON NEGATIVE ENERGY WHAT IS CNE?

- Carbon removal refers to any process or system capable of removing and sequestering carbon from the air over its life cycle
- CNE (or BioCCS) refers to any bioenergy process that captures and permanently stores carbon safely underground through carbon capture and storage (CCS)
- CNE can remove the harmful greenhouse gas carbon dioxide (CO₂) from the atmosphere while producing electricity and clean, renewable hydrogen

CNE I HOW IT WORKS

8 8 8 8

CES Carbon Negative Energy (CNE) plants use waste biomass fuels that are gasified to produce a synthesis gas. This "syngas" is then used to produce renewable hydrogen (RH_2), and/or electricity with full carbon capture using proprietary oxy-combustion technology

CNE I CES POWER BLOCK

. . . .

. . . .

CES I DIRECT STEAM GAS GENERATOR PACKAGE

Fully containerized oxy-combustion system for easy transport and installation

- Combustor: 2 meters (6 feet) long with 30 cm (12 inch) internal diameter
- Container: 3.3 meters (11 feet) x 3.3 meters (11 feet) x 12 meters (40 feet)
- Fits on standard shipping vehicles
- Designed and built to ASME Section
 VIII, Division 1

- Fully automated fire detection and suppression system
- Includes video monitoring and surveillance
- Minimized install time and cost

. . . .

CNE: WHY NOW? CLIMATE CHANGE AND AIR QUALITY

CALIFORNIA AIR QUALITY

2019 American Lung Association "State of the Air" Report

Top 10 Most Polluted U.S. Cities:

	Øzone		Short-Term Particle Pollution (24-hour PM _{2.5})		Year-Round Particle Pollution (Annual PM _{2.5})
1	Los Angeles-Long Beach, CA	1	Bakersfield, CA	1	Fresno-Madera-Hanford, CA
2	Visalia, CA	2	Fresno-Madera-Hanford, CA	2	Bakersfield, CA
3	Bakersfield, CA	3	Fairbanks, AK	3	Fairbanks, AK
4	Fresno-Madera-Hanford, CA	4	San Jose-San Francisco-Oakland, CA	4	Visalia, CA
5	Sacramento-Roseville, CA	5	Missoula, MT	5	Los Angeles-Long Beach, CA
6	San Diego-Chula Vista-Carlsbad, CA	6	Yakima, WA	6	San Jose-San Francisco-Oakland, CA
7	Phoenix-Mesa, AZ	7	Los Angeles-Long Beach, CA	7	Pittsburgh-New Castle-Weirton, PA-OH-WV
8	San Jose-San Francisco-Oakland, CA	8	Salt lake City-Provo-Orem, UT	8	El Centro, CA
9	Houston-The Woodlands, TX	9	Seattle-Tacoma, WA	9	Cleveland-Akron-Canton, OH
10	New York-Newark, NY-NJ-CT-PA	10	Pittsburgh-New Castle-Weirton, PA-OH-WV	10	Medford-Grants Pass, OR

CNE I WHY NOW?

Multiple factors aligned to make deployment profitable

- Revenues for carbon capture and storage projects have increased from \$20 to \$250/tonne in select markets
 - Federal Tax Credit increased from \$20/tonne CO₂ to \$50/tonne CO₂
 - California's Low Carbon Fuel Standard (LCFS) program credit prices consistently average near \$200/tonne cap*
- Biomass power industry in California has collapsed due to competition from wind and solar for new power contracts
 - Resulted in stranded assets and infrastructure
 - Biomass waste disposal now a significant challenge for farmers and municipalities; attractive long-term fuel contracts available
- Enormous potential for carbon storage in California; projects build on knowledge gained from past efforts (e.g. CEC, DOE WestCARB)
- Required CES technology has been developed and vetted over the past 25 years → Low Technology Risk

California's Declining Carbon Regulation

Transportation fuels certified to a "well-to-wheels" carbon footprint, known as a Carbon Intensity (CI)

- Different fuel types can be compared directly using CO2 equivalent (CO2e) and energy economy ratio (EER) factors
- CES' CNE plants will set a new precedent for carbon footprint of renewable fuels production
 - CNE fuels, e.g. electricity or hydrogen, have a CI score near -2,000 gCO2e/MJ (verified by an independent third party); 10 times better than nearest competitor!
 - Cl score of CNE fuels is literally off the chart
 - Enabled by CES' proprietary oxy-combustion technology and carbon capture and storage
 - Adds significant value in LCFS market

Carbon Intensity Values of Current Certified Pathways (2020)

CNE I POTENTIAL FOR CCS IN CALIFORNIA

California Offers Very Large CO₂ Storage Capacity:

- California's on-shore sedimentary have capacity for roughly 1,000 years of current CO₂ emissions (point source)
- The largest storage capacity identified in the state's Central Valley basin

- 30-460 Gt onshore saline formation capacity
- 3.3-5.7 Gt natural gas reservoir capacity
- 1.4-3.7 Gt oil reservoir capacity

CNE I POTENTIAL FOR BIOCCS IN CALIFORNIA

CLEAN ENERGY SYSTEMS

- More than 15 idle biomass power plants in California today (>375 MW), with more anticipated to close in the coming years
- Excellent overlay of plant locations with CCS storage sites
- Suitable for delivery to state refineries or the Hydrogen Highway

Sedimentary Basin Status

Basin with Carbon Sequestration Potential

CNE I COMMUNITY BENEFITS

- Revitalization of existing biomass plants
- Elimination of criteria pollutant and CO₂ greenhouse gas emissions
- Reduction of open field burning of agricultural
- Supports decarbonization of California's transportation sector
 - Hydrogen from CNE plants removes ~3 lbs of CO₂ from the atmosphere for every mile driven
- Helps address tree mortality and wild fire crisis in the state
- A net water producer, with the ability to desalinate brackish water in the Central Valley
- Absolute necessity to meet the world's goal of less than 2 °C global temperature rise

CES DEPLOYMENT I ENVIRONMENTAL IMPACT

- CES plans to deploy a fleet of CNE plants across California by retrofitting existing, idled biomass facilities
- First plants will be deployed in the Central Valley; CES has site control for the first four plants to be deployed by 2025
- Significant fuel production and environmental benefits for the state by replicating and scaling CNE plants

	First Four CNE Plants	Future Potential					
	2022-2025	2025+					
Fuel Production (tonne/day)							
RH ₂ Produced	33	425					
Emissions Avoided (tonne/yr)							
CO ₂ Captured & Avoided	1,300,000	16,200,000					
NOx Avoided	2,400	29,900					
Particulates Avoided	5,100	64,100					

. . . .

CNE I SUMMARY & NEXT STEPS

- CES is working to develop the world's first carbon negative energy plants in California
 - Currently in project development of first two project sites
 - Plants will capture and permanently sequester 1 million tons of CO₂ per year (~950k metric tonne/yr)
 - Front-end engineering kicked off for major equipment (gasifier, hydrogen separation/processing, etc.)
 - Class VI CO₂ storage permit application submitted to EPA, currently under review with positive feedback
 - Tier 2 pathway for inclusion in California's Low Carbon Fuel Standard (LCFS) program submitted
- Next steps include securing feed and offtake agreements, conducting detailed engineering and permitting activities, and securing project financing
 - Secure feedstock supply and renewable electricity and hydrogen off-take agreements (in progress)
 - Contract vendors for key equipment blocks to secure fixed-price contracts (gasifier, oxygen supply, and hydrogen separation/liquefaction); same for all project sites
 - Kick off financing activities for first project sites, e.g. state-issued tax-exempt bonds
 - Work with EPA to secure Class VI injection permit (pre-construction) and develop and submit application for CARB Sequestration Site Permanence Certification

Keith L. Pronske, President and CEO

KLPronske@CleanEnergySystems.com

Office: +1 916-638-7967

Or visit us at: www.CleanEnergySystems.com

